Implementation of NAS Parallel Benchmarks in High
Performance Fortran

Michael Frumkin, Haogiang Jin, Jerry Yan!
NAS Technical Report NS-98-009 September 98

{frumkin,hjin,yan}@nas.nasa.gov
NAS Parallel Tools Group
NASA Ames Research Center
Mail Stop T27A-2
Moffett Field, CA 94035-1000

Abstract

We present an HPF implementation of BT, SP, LU, FI, CG and MG of the NPB2.3-serial
benchmark set. The implementation is based on HPF performance model of the bench-
mark specific primitive operations with distributed arrays. We present profiling and per-
formance data on SGI Origin 2000 and compare the results with NPB2.3. We discuss
advantages and limitations of HPF and pghpf compiler.

1. MRJ Technology Solutions, Inc. M/S T27A-2, NASA Ames Research Center, Moffett Field, CA
94035-1000

1. Introduction

The goal of this study is an evaluation of High Performance Fortran (HPF)
as a choice for machine independent parallelization of aerophysics appli-
cations. These applications can be characterized as numerically intensive
computations on a set of three-dimensional (3D) grids with local access
patterns to each grid and global synchronization of boundary conditions
over the grid set. In this paper we limited our study to six NAS bench-
marks: simulated applications BT, SP, LU and kernel benchmarks FI, CG
and MG [2].

HPF provides a data parallel model of computations [8]. In this model cal-
culations are performed concurrently with data distributed across proces-
sors. Each processor processes the segment of data which it owns (owner
computes rule). The sections of distributed data can be processed in parallel
if there are no dependencies between them. The sections with dependen-
cies may or may not be processed in parallel depending on the HPF com-
piler’s ability to pipeline computations.

The data parallel model of HPF appears to be a good paradigm for aero-
physics applications working with data defined on structured 3D grids. A
simple decomposition of grids into independent sections of closely locat-
ed points followed by a distribution of these sections across processors
would fit into the HPF model. In order to be processed efficiently these
sections should be independent, well balanced multidimensional blocks.
In our implementation of the benchmarks we addressed these issues and
suggested data distributions satisfying these requirements.

HPF has a limitation in expressing pipelined computations essential for
parallel processing of distributed data with dependencies between sec-
tions. To make the code immune to the compiler’s ability to pipeline the
computations it is necessary to redistribute data in directions orthogonal
to the dependencies. It also requires scratch arrays to be kept with an al-
ternate distribution (see sections on BT, SP and FT).

A practical evaluation of the HPF versions of benchmarks was done with
the Portland Group pghpf 2. 4 compiler [12] on an SGI Origin 2000 (the
only HPF compiler available to us at the time of writing). In the course of
the implementation we had to address several technical problems: over-
head introduced by the compiler, unknown performance of operations
with distributed arrays, and additional memory required for storing ar-
rays with an alternative distribution. To address these problems we built
an empirical HPF performance model. In this respect our experience con-
tirms two known problems with HPF compilers [11,4]: lack of a theoretical
performance model and the difficulty of tracking down the poor perform-
ing pieces of the code. A significant advantage of using HPF is that the

conversion from F77 to HPF results in a well structured easily maintained
portable program. An HPF code can be developed on one machine and
run on another (more than 50% of our development was done on a “Pen-
tium cluster”).

In section 2 we consider a spectrum of choices HPF provides for parallel-
ization and build an empirical HPF performance model in section 3. In
section 4 we characterize the algorithmic nature of BT, SP, LU, FT, CG and
MG benchmarks and describe an HPF implementation for each of them.
In section 5 we compare our performance results with the performance of
NPB2.3 Class A benchmarks. Related work and conclusions are discussed
in sections 6 and 7 respectively.

2. HPF Programming Paradigm

In the data parallel model of HPF, calculations are performed concurrently
over data distributed across processors'. Each processor processes the
segment of data it owns. In many cases HPF compiler can detect concur-
rent calculations with distributed data. HPF advises a two-level strategy
for data distribution. First, arrays should be coaligned with ALIGN direc-
tive. Then each group of coaligned arrays should be distributed onto ab-

stract processors with the DISTRIBUTE directive.

There are several ways to express parallelism in HPF: F90 style of array ex-
pressions, FORALL and WHERE constructs, the INDEPENDENT direc-
tive and HPF library intrinsics [9]. In array expressions, operations are
performed concurrently on segments of data owned by a processor. The
compiler takes care of communicating data between processors if neces-
sary. The FORALL statement performs computations for all values of the
index (indices) of the statement without guaranteeing any particular or-
dering of the indices. It can be considered as a generalization of F90 array
assignment statement.

The INDEPENDENT directive states that there are no dependencies be-
tween different iterations of a loop and the iterations can be performed
concurrently. In particular it asserts that Bernstein’s conditions are satis-
fied: sets of read and written memory locations on different loop iterations
don’t overlap and no memory location is written twice on different loop
iterations [8, p. 193]. All loop variables which do not satisfy the condition
should be declared as new and are replicated by the compiler in order for
the loop to be executed in parallel.

1. The expression “data distributed across processors” commonly used in papers on HPF is not
very precise since data resides in memory. This expression can be confusing for shared memory
machines. The use of this expression assumes that there is a mapping of memory to processors.

Many HPF intrinsic library routines work with arrays and are executed in
parallel. For example, the r andom nunber subroutine initializes an ar-
ray of random numbers in parallel with the same result as a sequential
subroutine conmput e_i ni ti al _condi ti ons of FT. Other examples are
intrinsic reduction and prefix functions.

3. Empirical HPF Performance Model

The concurrency provided by HPF does not come for free. The compiler
introduces overhead related to processing of distributed arrays. There are
several types of the overhead: creating communication calls, implement-
ing independent loops, creating temporaries, and accessing distributed
arrays’ elements. The communication overhead is associated with re-
quests of elements residing on different processors when they are neces-
sary for evaluation of an expression with distributed arrays or executing
an iteration of an independent loop. Some communications can be deter-
mined at compile time while others can be determined only at run time
causing extra copying and scheduling of communications [12, Section 6].
As an extreme case, the calculations can be scalarized resulting in a signif-
icant slowdown.

The implementation of independent loops in pghpf extends the "owner
computes" rule. It assigns a home array to each independent loop and uses
the home array for the localization of loop iterations. The compiler selects
a home array from array references within the loop or creates a new tem-
plate for the home array. If there are arrays which are not aligned with the
home array they are copied into a temporary array. This involves allocat-
ing/deallocating of the temporaries on each execution of the loop. An ad-
ditional overhead is associated with the transformations on the loop
which the compiler has to perform to ensure its correct parallel execution.

Temporaries can be created for passing a distributed array to a subroutine.
All temporarily created arrays must be properly distributed to reduce the
amount of copying. Inappropriate balance of the computation/copy oper-
ations can cause noticeable slowdown of the program.

The immanent reason of the overhead is that HPF hides the internal rep-
resentation of distributed arrays. It eliminates the programming effort
necessary for coordinating processors and keeping distributed data in a
coherent state. The cost of this simplification is that the user does not have
a consistent performance model of concurrent HPF constructs. The pghpf
compiler from Portland Group has a number of ways to convey the infor-
mation about expected and actual performance to the user. It has flags -
M nf o for the former, - Mpr of for the later and - Mkeepf t n for keeping
the intermediate FORTRAN code for the user examination. The pghpf

4

USER'’s guide partially addresses the performance problem by disclosing
the implementation of the INDEPENDENT directive and of distributed
array operations [12, Section 7].

To compensate for the lack of a theoretical HPF performance model and to
quantify compiler overhead we have built an empirical performance
model. We have analyzed the NPB, compiled a list of array operations
used in the benchmarks and then extracted a set of primitive operations
upon which they can be implemented. We measured performance of the
primitive operations with distributed arrays and used the results as a
guide in HPF implementations of the NPB.

We distinguish 5 types of primitive actions with distributed arrays, as
summarized in Table 1:

+ loading/storing a distributed array and copying it to another
distributed array with the same or a different distribution
(includes shift, transpose and redistribution operations);

« filtering a distributed array with a local kernel (the kernel can be
a first or second order star-shaped stencil as in BT, SP and LU, or
compact 3x3x3 stencil as in the smoothing operator in MG);

« matrix vector multiplication of a set of 5x5 matrices organized as
3D array by a set of five-dimensional vectors organized in the
same way (manipulation with 3D arrays of five-dimensional
vectors is a common CFD operation);

» passing a distributed array section as an argument to a subrou-
tine;
« performing a reduction sum.

We used 5 operations of the first group including: (1) assignment of values
to a non-distributed array, (2) assignment of values to a distributed array;,
(3) assignment of values to a distributed array within a loop having a non-
distributed dimension declared as independent, (4) shift of a distributed
array along a distributed dimension and (5) copy of a distributed array to
an array distributed in another dimension (redistribution). In the second
group we used filtering with the second order (7 point) finite difference
stencil and the fourth order (13 point) finite difference stencil. We used
both the loop syntax and the array syntax for implementation. In the third
group we used 2 variants of matrix vector multiplication: (10) the stan-
dard and (11) with the internal loop unrolled. In the fourth group we have
passed 2D section of 5D array to a subroutine. (This group appeared to be
very slow and we did not include it into the table). The last group in-
cludes: (12) reduction sum of a 5D array to a 3D array and (13) reduction
sum.

All arrays in our implementations of these primitive operations are
101x101x101 arrays (odd block sizes were chosen to reduce the cache re-
lated effects) of scalars, 5x1 vectors and of 5x5 matrices. We used BLOCK
distribution only (see section 4.1). The profiling results of these opera-
tions, compiled with pghpf and run on a SGI Origin 2000, are given in Ta-
ble 1. The execution time of the first operation compiled explicitly for a
single processor was chosen as a base time in each group.

Single
Operation Name\nprocs Proc. 1 2 4 8 16 32
1. Serial assignment 1.00 1.27 137 | 152 | 1.56 | 299 | 3.06

2. Distributed assignment | 1.23 1.27 0.68 | 037 |0.18 |0.10 | 0.04

3. Distributed assignment | 0.89 8.82 544 | 289 | 124 | 090 | 0.58
+ INDEPENDENT

4. Distributed shift 1.34 2.59 193 | 1.10 | 0.69 | 0.65 | 0.62
5. Redistribution 1.34 1.00 121 [093 | 041 | 030 | 0.24
6. First order stencil sum 1.00 1.55 0.77 §0.24 §0.10 0.05 0.03

7. First order stencil sum 0.72 1.55 0.80 0.24 § 0.09 0.05 0.03
(array syntax)

8. Second order stencil 1.09 1.94 097 § 034 §0.14 §0.07 §0.03
sum
9. Second order stencil 0.85 2.18 1.05 § 038 J0.16 §0.07 §0.03

sum (array syntax)

10. Matrix vector multipli- | 1.00 1.45 0.67 | 043 | 0.13 | 011 | 0.05
cation

11. Matrix vector mult. 1.23 1.49 0.69 044 | 0.14 0.11 0.05
with internal loop unrolled

12. 5D to 3D reduction 1.00 1.44 0.77 § 042 §0.22 §0.15 § 0.06
sum

13. Reduction sum 9.83 2.19 1.16 J 060 §039 j§0.19 j0.10

TABLE 1. Relatve time of basic operations on SGI Origin 2000. The column
labeled as “Single Prddists the results of the program compiled with a flag -
Mf90 and run on a single processbhis remwoes werhead of handling of
distributed arrays. All other columns list results of the program compiled for a
symbolic number of processors and run on the specified number of processors.

We can suggest some conclusions from the profiling data.

« Execution of a sequential, non-distributed code slows down as
the number of processors grows (line 1).

+ Distribution of an array can have a significant performance pen-
alty even when running on single processor (Single Proc. vs. col-
umn 1).

« A placement of the independent directive before a loop over a
nondistributed dimension confuses the compiler and slows
down the program (line 3).

« Efficiency of some parallel operations is close to 1 (lines 6 and 11)
while others have efficiency less then 0.5 (lines 4 and 5).

* Replacing loops with array assignment speeds up the sequential
program (line 7 and 9 vs. line 6 and 8) but has no effect on paral-
lel performance.

« Loop unrolling does not affect performance (line 11 vs. line 10)
as much in pghpf 2. 4.In pghpf 2. 2 the difference was larger
than a factor of 3 for more than 8 processors.

* The smaller the number of dimensions that are reduced, the bet-
ter the operation scales (line 12 vs. line 13).

« Passing array sections as arguments is an order of magnitude
slower then passing the whole array (not included in the table).

We have used the model to choose the particular way to implement oper-
ations with distributed arrays. For example, we have used an array syntax
instead of loops in the cases where communications were required (such
as calculating differences along the distributed direction). Also we have
inlined subroutines called inside of loops with sections of distributed ar-
rays as arguments. We have parallelized a loop even if it looked like the
loop performs a small amount of computations and should not affect the
total computation time (see conclusion 1).

We used pgpr of and internal NPB timer for profiling the code. The pg-
prof allows to display time spent in subroutines or lines of the code per
each processor. To get the profiling data the code should be compiled with
- Mpr of =l i nes or - Mpr of =f unc flag. The profiler also allows to dis-
play the number and the total size of messages. The profiling involves a
significant overhead and can not be used for profiling of large programs.
For profiling of the benchmarks we used an internal timer supplied with
NPB. The timer is serial and can be accessed at synchronization points
only, which makes it unsuitable for a fine grain profiling such as processor
load variation.

4. HPF Implementation of NAS Benchmarks

NAS Parallel Benchmarks consist of eight benchmark problems (five ker-
nels and three simulated CFD applications) derived from important class-
es of aerophysics applications [2]. The NPB2.3 suite contains MPI
implementations of the benchmarks which have good performance on
multiple platforms and are considered as a reference implementation. The

NPB2.3-serial suite is intended to be starting points for the development
of both shared memory and distributed memory versions, for testing par-
allelization tools, and also as single processor benchmarks. We have not
included HPF version of EP since we don’t expect to get any useful data
on HPF performance from EP. We have not included HPF version of C
benchmark IS either.

We took NPB2.3-serial as a basis for HPF version. We used our empirical
HPF performance model as a guide for achieving performance of HPF
code. Also we relied on the compiler generated messages regarding the in-
formation on loop parallelization and warnings about expensive commu-
nications. We used standard HPF directives (actually a very limited basic
subset of the directives) as specified in [7].

We limited ourselves to moderate modifications of the serial versions such
as inserting HPF directives, writing interfaces, interchanging loops and
depth-1 loop unrolling. The resulting program is F77 code, modernized
with F90 syntax and HPF directives rather then pure HPF program writ-
ten from scratch. We avoided significant changes such as inlining, remov-
ing arrays from common blocks and passing them as subroutine
arguments. We avoided usage of optimized low level linear algebra and
FFT library subroutines. We used flag - M1pi to pghpf compiler to gener-
ate a parallel code and npi r un to run it.

The source code of NPB can be found in the NAS parallel benchmarks
home page'. The page also contains links to HPF implementations of NPB
by Portland Group and by Advanced Parallel Research. Extenswe data on
NPB performance can be found in T. Faulkner’s home page A compari-
son of different approaches to semi-automatic parallelization of NPB is
given in [5].

Benchmarks BT, SP and LU solve a 3D discretization of Navier-Stokes
equation

Ku=r (1)

where 1 and r are 5x1 vectors defined at the points of a 3D rectangular grid
and Kis a 7 diagonal block matrix of 5x5 blocks. The three benchmarks dif-
fer in the factoring of K. The FT performs FFT of a 3D array, CG solves a
sparse system of linear equations by the conjugate gradient method, and
MG solves a discrete Poisson problem on a 3D grid by the V-cycle multi-
grid algorithm.

1. http://science.nas.nasa.gov /Software/NPB
2. http://science.nas.nasa.gov/~faulkner

41 BT Benchmark

BT uses Alternating Direction Implicit (ADI) approximate factorization of
the operator of equation (1):

K 0BT, (BT, (BT,

where BT, BT, and BT are block tridiagonal matrices of 5x5 blocks if grid
points are enumerated in an appropriate direction. The resulting system
is then solved by solving the block tridiagonal systems in x-, y- and z-di-
rections successively. The main iteration loop of BT starts from the com-
putation of r (conput e_r hs) followed by successive inversion of BT,,
BT, and BT, (x_sol ve,y_sol ve and z_sol ve) and is concluded with
updating of the main variable u (add).

Each subroutinex_sol ve, y_sol veand z_sol ve solves a second order
recurrence relations in the appropriate directions. These computations can
be done concurrently for all grid lines parallel to an appropriate axis while
the computation along each line is sequential. A concurrency in X_sol ve
and y_sol ve can be achieved by distributing the grid along z-direction.
This distribution would formally preclude concurrency in z_sol ve since
HPF contains no expression mechanism to organize processors to work in
a pipelined mode. In order for z_sol ve to work in parallel the grid has
to be redistributed along x- or y-direction or both.

In our HPF implementation of BT the subroutines conpute_rhs,
x_sol ve, y_sol ve and add work with u, rhs and | hs distributed
blockwise along z-direction. The subroutine z_sol ve works with r hsy
and | hsy distributed blockwise along y-direction and uses uy (uy, r hsy
and | hsy are copies of u, r hs and | hs distributed in y-direction). The re-
distribution of r hs tor hsy is performed at the entrance to z_sol ve and
back redistribution is performed upon exit from z_sol ve. The redistribu-
tion uy=u is performed just before calculation of | hsy.

The main loop in X_sol ve (symmetrically y_sol ve and z_sol ve) for
each grid point calls 5x5 matrix multiplication, 5x5 matrix inversion and
5x5 matrix by 5x1 vector multiplication. Using pgpr of we found that the
calls had generated a significant overhead probably related to passing a
section of a distributed array to a subroutine. These subroutines were in-
lined and the external loop was unrolled. This reduced the execution time
by a factor of 2.9 on up to 8 processors. For a larger number of nodes scal-
ing limitations come into effect and reduction is less.

The inlining and loop unrolling made the internal loop of x_solve too
complicated and the compiler message indicated that it had not been able
to parallelize the loop. The INDEPENDENT directive was sufficient for
parallelization of the loop. It, however, introduced an overhead which

caused the program to run 1.85 times slower on single processor relative
to the program compiled with - M 90 flag.

Note that use of two-dimensional distributions would not give any reduc-
tion in the computation to communication ratio. In fact, it would require
the redistribution of data three times per iteration and would result in a
slower program.

The profile of main BT subroutines is shown on Figure 1. The subroutines
which do not involve redistribution and /or communications scale nicely.
The communication during the computations of fluxes and dissipation in
the z-direction affects scaling of the r hs. The redistribution time essential-
ly stays constant with the number of processors and is responsible for the

reduction of the efficiency on more than 8 processors.
3_

10

] : —— total
B : - - redist
e -..a-- rhs

| —+—- Xsolve
—m ysolve
: —x— zsolve
o .. LR RREERE - add [

sec

10° 10

Number of processors

FIGURE 1. BT profile on Origin 2000. Note that r hs does not scale well
since it involves communications when computing the flux and the
dissipation in z-direction. The redistribution diminishes the efficiency of
the processor utilization as the number of processors grows.

10

4.2 SP Benchmark

SP uses the Beam-Warming approximate factorization and Pulliam-
Chaussee diagonalization of the operator of equation (1) and adds fourth-
order artificial dissipation:

-1 -1 -1
K OT, [P, 07, O, (P, OT 00T, [P, [T,

where T,, Ty and T, are block diagonal matrices of 5x5 blocks, P,, Py and
P, are scalar pentadiagonal matrices. The resulting system then solved by
inverting block diagonal matrices T, T}’ ary, T, Or, and T,' and solv-

y
ing the scalar pentadiagonal systems.

The main iteration loop of SP is similar to the one in BT. It starts with
the computation of r hs which is almost identical to conput e_r hs in BT
followed by an interleaved inversion of block diagonal and scalar penta-
diagonal matrices and is concluded with updating of the flux u (add), see
Figure 2.

do step = 1,niter
call conpute_rhs
call txinvr
call x_solve
call ninvr
call y_solve
call pinvr
call z_solve
call tzetar
call add

end do

FIGURE 2. The main iteration loop of SP.

Parallelization of SP is similar to the parallelization of BT: all subroutines
except z_sol ve operate with data distributed blockwise in the z-direc-
tion. The subroutine z_sol ve works with data distributed blockwise in
y-direction. The redistribution of r hs and of a few auxiliary arrays is per-
formed at the entrance to z_sol ve and back redistribution of r hs is per-
formed on the exit from z_sol ve. As in BT a 2D distribution would
require more redistributions and would slow down the benchmark.

Profile of SP (see Figure 3) suggests a few conclusions. The dominant fac-
tor of the execution time is the computation of r hs and the redistribution.
The redistribution time varies slightly with the number of processors and
is the major factor affecting scaling of the benchmark. The communica-
tions involved in the computing r hs in z-direction also affect the scaling.

11

The solver itself takes much less time than these two operations and scales

well.
e
10 S
] —y— total
i - @ - redistr
1 -.A-- rhsx
R —&— rhsy
: - rhsz
T et SRR —¢— xsolve
10 E B : - 4 - ysolve
T~ ---{--- zsolve
1.
10 S
Oi
10
10

10° 10"

FIGURE 3. SP profile on SGI Origin 2000. The redistribution and
communications in r hsz effect scaling of SP.

4.3 LU Benchmark

LU implements a version of SSOR algorithm by splitting of the operator
of equation (1) into a product of lower triangular matrix and upper trian-
gular matrix:

K D0(2 - w)(D + wY)(l +wD 2)

where w is a relaxation parameter, D is the main block diagonal of K, Y
consists of three sub block diagonals and Z consists of three super block
diagonals. The problem is solved by computing elements of the triangular
matrices (subroutines j acl d and j acu) and solving the lower and the
upper triangular system (subroutines bl t s and but s).

The ssor is implemented as a sequence of sweeping of the horizontal
planes of the grid, see Figure 4.

DOk =2, nz -1
call jacld(k)
call blts(k)

END DO

12

DOk =nz - 1, 2, -1
call jacu(k)
call buts(k)

END DO
call add
call rhs

FIGURE 4. LU implementation of ssor subroutine.

The subroutines j acl d, j acu, add and r hs are completely data parallel
meaning that operations can be performed concurrently in all grid points.
Both bl t s and but s have a limited parallelism because processing of an
(i,j,k) grid point depends on the values in the points (i+e,j k), (i,j+e,k) and
(i,jk+e), where e =-1 for bl ts and e = 1 for but s. The small amount of
work on each parallel step would cause too many messages to be sent. A
method of increasing parallelism and of reduction of the number of mes-
sages called Hyperplane Algorithm was proposed by Lamport and used
in [3] for the LU implementation and we decided to choose this algorithm
for HPF implementation.

In the Hyperplane Algorithm, computations are performed along the
planes i+j+k=m, where m is a hyperplane number, m = 6,...,nx+ny+nz-3.
For calculation of the values on each plane, values from the previous
plane (lower triangular system) or from the next plane (upper triangular
system) are used.

In the Hyperplane Algorithm the external loop on k was replaced by the
loop on the plane number m, and j-loop bounds became functions of m
and i-loop bounds became functions of m, and j and k is computed as k =
m-i-j. These loop bounds were taken from precalculated arrays.

Parallelization of LU was done by distribution of arrays blockwise in the
j-direction. An advantage of LU relative to BT and SP is that no redistribu-
tions are necessary. A disadvantage is uneven distribution of plane grid
points causing load imbalance. A 2D distribution could not be handled by
the compiler efficiently. (The problem was in assigning of an appropriate
home array to a nest of two independent loops with variable loop
bounds.)

Profile of LU is shown in Figure 5. Low efficiency of LU resulted from two
sources: a large number of relatively small messages (caused by process-

13

ing of odd shaped arrays) have to be sent after each iteration of m loop,
and a poor load balancing.

10

\’\J\\\P)

|

10

l\\llrﬂ

=
Q
=
Q

FIGURE 5. LU profile on SGI Origin 2000.

4.4 FT Benchmark

FT implements Fast Fourier Transformation (FFT) of a 3D array. The trans-
formation can be formulated as a matrix vector multiplication:

v=(F,O0F,0F)u

where u and v are 3D arrays of dimensions (m,n,k) represented as vectors
of dimensions mxnxk and Fj, I=m,n,k is an FFT matrix of the order 1. The
algorithm is based on factorization of the FFT matrix:where I}, I=m,n k is

F OF,O0F = (0,01, 0F)(0F O1)(F,O1,01,)

the identity matrix of the order I. Multiplication of each factor by a vector
is equivalent to FFT of the array in one direction, henceforth FT performs
FFTs in x-, y- and z- directions successively. The core FFT is implemented
as a Swarztrauber’s vectorization of Stockham autosorting algorithm per-
forming independent FFTs over sets of vectors. The number of vectors in
the sets are chosen to fit the sets into the primary cache.

For the HPF implementation we distributed u blockwise in z-direction,
perform FFTs in x-direction, transpose the array, perform FFT in y-direc-
tion, redistribute the array along y-direction and perform FFT in z-direc-

1. Here ALl B isablock matrix with blocks 4;B and is called tensor product of A and B

14

tion. The loops with FFTs in one direction calling pure Swar zt r auber
subroutine were declared as INDEPENDENT. The transposition and re-
distribution operations were converted by pghpf compiler to FORALL
statements automatically given - Maut opar flag so that INDEPENDENT
directives were unnecessary for these loops.

Note the significant difference between transposition and redistribution.
The transposition operation involves reading an array columnwise and
writing it rowwise and assumes that these dimensions are not distributed.
The transposition does not involve communications. The redistribution
copies between two arrays with different distributions and usually re-
quires all-to-all communications. The difference between transposition
and redistribution is not as significant on shared memory machines as on
distributed memory machines.

Note also that iterations of FT are independent since the result of one iter-
ation is not used for the next one. Neither our HPF version of FT nor
NPB2.3 version take advantage of this level of parallelism.

The profile of FT (see Figure 6) shows that the core FFT computations con-
sume about 50% of total time and scale well with the number of proces-
sors. The redistribution and transposition don’t scale as consistently as the
core calculations, reducing the efficiency of the benchmark on a large
number of processors

b —»— total

- o - redistr
-.-a-- COreFT
—+—- transpose

FIGURE 6. FT profile on SGI Origin 2000.

15

4.5 CG Benchmark

CG is different from the other benchmarks since it works with a large
sparse unstructured matrix. CG estimates the largest eigenvalue of a sym-
metric positive definite sparse matrix by the inverse power method. The
core of CG is a solution of a sparse system of linear equations by iterations
of the conjugate gradient method. One iteration can be written as follows:

T
q=Ap, d=paq,

a=P z=z+ap r =r-agq

d
— - - P -
pO_plp_rr/ __/p_r+Bp
Po

The main iteration loop contains one sparse matrix vector multiplication,
two reduction sums, three daxpy operations and a few scalar operations.
The most computationally expensive operation is the sparse matrix vector
multiplication = Ap. Nonzero elements of A are stored by row in a
compressed format. The column indices of matrix elements are stored in a
separate array col i dx.

The matrix vector multiplication and daxpy operations are parallel,
meaning that the computation of each component of the result is indepen-
dent. In our HPF implementation we distributed z,4,r and x and replicated
A, p and col i dx. This allowed the matrix vector operation to be per-
formed in parallel, however daxpy operations were performed with vec-
tors having different distributions.

The replication of A will cause problems if A will not fit into the memory
of one processor. On each processor only a small number of rows of A are
used to calculate the section of g distributed onto the processor. The spar-
sity of A makes the sizes of the rows vary and in order to distribute it we
created a matrix B with number of columns equal to the maximum num-
ber of nonzero elements in rows of A. We aligned rows of B with g and cop-
ied A to B row by row. This eliminated replication of A but resulted in 20%
slower code.

The profile of CG is shown in Figure 7. The matrix vector multiplication
scales well. The daxpy operations of a replicated p with distributed vec-
tors r and z scale negatively, ruining performance on 32 processors. An ex-
plicit replication of p slows the program down. An algorithm for matrix

16

vector multiplication which does not require all-to-all communication is
given in [10].

—»— total

- -e - daxpy

.. a-- redsum
—+—- SparseMV

.....................

FIGURE 7. CG profile on SGI Origin 2000

4.6 MG benchmark

MG benchmark performs iterations of V-cycle multigrid algorithm for
solving a discrete Poisson problem [u = v on a 3D grid with periodic
boundary conditions [2]. Each iteration consists of evaluation of the resid-
ual:

r = v—Au

and of the application of the correction:
u=u+Mr
where M is the V-cycle multigrid operator.

The V-cycle starts from an approximate solution on the finest grid, com-
putes the residual and projects it onto progressively coarse grids (down
substep). On the coarsest grid it computes an approximate solution by
smoothing the residual (psi nv subroutine), interpolates the solution onto
a finer grid, computes the residual and applies the smoothing on the finer
grid (up substep). In a few i nt er p-r esi d- psi nv substeps the V-cycle
finishes with an updated solution on the finest grid.

To implement MG in HPF we introduced a 4 dimensional array and
mapped grids of different coarseness into 3D sections of this array with a
fixed value of the last dimension. We used 1D BLOCK distribution of the
array in the z-direction. The projection, interpolation, smoothing and

17

computation of the residual are performed at each grid point indepen-
dently. 2D or 3D partitions would reduce the surface to volume ratio of the
array sections and would reduce the number of messages. In practice,
however 2D partition resulted in a slightly slower code and 3D partition
in a significantly slower code.

The HPF implementation of MG stretches the limits of pghpf in a few re-
spects. First, the number of grids and their sizes vary depending on the
benchmark class. In order to be able to implement a loop over the grids we
need an array of pointers to arrays. This feature is not implemented in the
version of pghpf compiler which we used. As a work around we intro-
duced the 4D array and used its last dimension as a grid pointer. The over-
head of this is allocation of significantly larger memory than actually is
used and large strides in accessing points of coarse grids. (In the original
E77 version 3D arrays are packed into a 1D array with and are referred to
by the address of the first elements.)

Second, the residual and the smoother work on the same grid performing
convolutions with 3x3x3 kernels. This operation requires access to non lo-
cal sections of data and results in a poor scalability of these two subrou-
tines (see MG profile on Figure 9). An implementation of these convol-
utions with an array syntax did not speed up the benchmark.

The projection and the interpolation subroutines work with a pair of
grids, one of which is a refinement of another. Using the same block dis-
tribution for all grids collapses the coarsest grids onto a smaller number
of processors. It inhibits access to the appropriate portions of the coarser
grid. The projection and the interpolation subroutines involve the shuf-
fling operations with grids:

u(2*i 1-1, 2%i 2-1, 2*i 3-1) =
U(2*i1-1,2%i 2-1, 2%i 3-1) +z(i 1,i 2, i 3)
u(2*i1,2%i2-1,2%i3-1) =
U(2*i 1, 2% 2-1, 2%i 3- 1) +z(i 1+1,i 2,1 3) +z(i 1,i 2, i 3)

The compiler was not able to parallelize the loop with the shuffling oper-
ation in the body because of complex index expressions (according to the
compiler’s message). We have used the array syntax and ONHOVE clause
for parallelization (see Figure 8).

lhpf$ align woll(il1,i2,i3) with
u(2*i 1, 2*i 2-1, 2*i 3-1)
Ihpf$ align will(il,i2,i3) with
: u(2*i 1-1, 2*i 2-1, 2*i 3-1)
will(1l:nml-1,21:nm2-1,21:nB-1) =
z(1:nml-1,1:nR2-1, 1: nB-1)
woll(1:nl-1,21:nR-1,1:nB-1) =
z(1:nl-1,1:nR-1,1: nB-1) +

18

: z(2:ml, 1: -1, 1: nB-1)
'hpf$ i ndependent, on home(w0ol1l(il,i2,i3))
do i3=1,n8B-1
do i2=1,nk-1
do i1=1,nml-1
u(2*il1,2*i2-1,2*i3-1) =
u(2*i1,2*i2-1,2*i3-1) + wo11(i1,i2,i3)

end do
end do
end do
'hpf$ i ndependent, on home(wll1(i1,i2,i3))
do i3=1,n8B-1
do i2=1,nk-1
do il1l=1,nl-1

u(2*i1-1,2%i2-1,2%i3-1) =
u(2*i1-1,2*i2-1,2*i3-1) + wi11(il,i2,i3)
end do
end do
end do
FIGURE 8. Implementation of the shuffling with ONHOME clause.

The profile of MG (see Figure 9) shows that the smoothing and the resid-
ual operators do not scale well. These operators are not factored and re-
quire communications to access grid points distributed on different
processors.

10

\\\\h
/

10° 10

FIGURE 9. MG profile on SGI Origin 2000.

19

5. Comparison with MPI version of NPB2.3
The timing results of the benchmarks are summarized in Table 2 and the
plot is shown in Figure 10. As a reference we use the time on SGI Origin

2000 of the MPI version reported on the NPB home page.

TABLE 2. Benchmarks time on SGI Origin 2000(sec)

Nprocs 1 2 4 8 9 16 25 32
BT.A pghpf 2.4 3911.3 | 1865.4 | 921.1 | 469.7 273.6 174.0
BT.A NPB2.3 2611.0 7315 3140 | 1614 | 919

SP.A pghpf 2.4 33029 | 1629.4 | 861.2 | 416.1 | 371.6 | 2484 | 175.7 | 158.9
SP.A NPB2.3 1638.4 352.6 1420 | 791 | 46.2

LU.A pghpf2.4 | 3285.2 | 2277.8 | 1350.4 | 752.7 462.4 755.6
LU.A NPB2.3 17415 | 795.0 | 308.2 | 1443 67.4 33.8
FT.A pghpf 2.4 116.8 58.1 | 38.1 20.1 14.0
FT.ANPB2.3 132.8 85.8 444 | 231 11.8 6.3
CG.A pghpf2.4 64.4 346 | 17.32 9.0 7.72 12.5
CG.A NPB2.3 364 20.7 9.6 44 2.6 1.6
MG.A pghpf2.4 | 1621 | 136.0 | 93.65 | 59.3 39.31 29.5
MG.A NPB2.3 52.7 30.0 15.0 7.6 4.0 21

The HPF version are consistently slower than the MPI versions. The lower
performance of HPF versions results from two main sources: a single node
HPF code runs slower and it does not scale as well as MPI code.

A comparison of single process performance of pghpf compiled code ver-
sus f 77 code shows that former generates about 2 times slower code than
the latter. Since we did not do any code modifications which would
change the total operations count or would distort any array layout in the
memory (MG is an exception), we would account for this slowdown to the
compiler introduced overhead and cost of the redistribution. (The redis-
tribution on a single processor consumes less then 10% of the computa-
tional time.)

Processor utilization in HPF code is not as efficient as in the MPI versions
(NPB 2.3) for two reasons. HPF versions require an extra redistribution of
big arrays and the redistribution does not scale well. In the version of the
compiler which we used, the REDISTRIBUTE statement had not been im-
plemented. Implementation of this directive would allow one to organize
computations in BT and SP in the following sequence

x_solve, y_solve, z -> y redistribution, z_solve,

x_solve, y -> x redistribution, y_solve, z_solve, x -> z redistribution, ...

20

BTclassA
— pghpf24
-e- NPB23

SPclass A
—=— pghpf 2.4
-e- NPB23

2 *
10 1 — .
1¢° 10' 10 10'
LU class A

—+— pghpf2.4 FT class A
-e- NPB23 - — pghpf2.4

2| e -e- NPB23

3] 1 N
o 10] :
) N
10 4 . 1]
] 10
1f 10" 1¢ 10
10 | 10
MG Class A
—a— pghpf 2.4
CG Class A e 2
T 10
1] \/
10
1
0. ’ T
10 o -
10° 10' 1 10

FIGURE 10. HPF versus MPI time for class A on SGI Origin 2000. The
horizontal axis is number of processors and the vertical axis is execution

time in seconds

21

This would require 3 redistributions per 2 iterations instead of the current
4 and would reduce the redistribution overhead by a factor of 3/4. Doing
this by hand would involve unrolling the main loop in the solver and
would require significant code rewriting. The redistribution was the main
reason of flattening performance between 16 and 32 processors in BT, SP
and FT. An efficient implementation of redistribution would improve
scalability of these benchmarks. In the HPF 2.0 language specification,
however, the status of REDISTRIBUTE was changed from a language
statement to an approved extension (see 7) probably because of difficulties
with the implementation. Also HPF does not accommodate advanced do-
main decompositions like multi-partitioning. However, multi-partition-
ing itself does require some communication during the matrix inversion.

5. Related Work

The NPB are well recognized benchmarks for testing parallelizing compil-
ers, parallel hardware and parallelization tools [1,11,13]. These bench-
marks contain important kernels of aerophysics applications and may be
used for early validation of various approaches to the development of
high performance CFD codes.

Performance results of HPF implementation of “pencil and paper” NPB
specifications submitted by APR! and Portland Group? are reported in
[13]. The compiler vendors know the implementation of operations with
distributed arrays and may be implicitly they have an HPF performance
model. It allows them to choose the most efficient option for implementa-
tion choice. In some cases they use intrinsic customized HPF functions. It
allows some pghpf compiled benchmarks to outperform handwritten
MPI versions of NPB on CRAY T3D and CRAY T3E. Neither implementa-
tion has a version of the LU benchmark. APR’s implementation of MG
uses proprietary HPF directives. The Portland Group FT implementation
uses some HPF intrinsic functions customized for the benchmark.

The portability and scalability of HPF programs are studied in [11]. EP, FT
and MG are used for comparison of a number of compilers, MPI and ZPL
(a data parallel language developed at the University of Washington) im-
plementations. One of the conclusions is that a consistent HPF perfor-
mance model is important for scalability and portability of HPF
programs. The authors of the paper regret: “Unfortunately, a portable
HPF version of these (NPB) benchmarks is not available ...”. The current
report provides a solution to the problem.

1. http://www.apri.com/apr_nasbench.html
2. http:/ /www.pgroup.com/npb_results.html

22

Problems of analysis and code generation for data parallel programs were
discussed in [1]. As a solution the authors developed an integer set frame-
work and implemented it in the dHPF environment. The framework was
tested and profiled with BT, SP and LU.

A development of a large parallel application in an HPF programming en-
vironment called Fx is reported in [14]. The authors showed that an air
pollution model Airshed fits into the HPF programming paradigm, how-
ever it requires a number of redistributions to keep parallelism on the ac-
ceptable level. The code demonstrated good performance on up to 64
processors of the Cray T3D and Cray T3E.

An HPF implementation of a reservoir simulation involving a Gaussian
elimination algorithm for dense matrices is reported in [6]. Two compilers
were compared and good scalability results were achieved on a number
of platforms. A comparison of three HPF compilers for IBM SP2 machine
is reported in 1

6. Conclusions

HPF gives the programmer high-level programming language constructs
for expressing parallelism existing in a sequential code. It allows the port-
ing of certain classes of sequential codes to a parallel environment with a
moderate effort and results in a well structured parallel program. The ma-
chine architecture can be accounted for by using an appropriate lower lev-
el message passing library as specified by - Mpi , - Msnp or - M np flags
to the pghpf compiler and requires a minimal effort from the user.

The hiding of distributed array handling results in uncertainty of the over-
head of primitive operations with distributed arrays. Currently there are
no HPF language constructs which can convey this overhead to the user.
For example, data movement between processors can not be expressed in
terms of the HPF language. The problem is addressed in pghpf compiler
directives - M nf 0 and - Mkeepf t n as well as in pgpr of ability to show
message size and number. A clear performance model for handling dis-
tributed arrays would allow the user to steer the code to a better perfor-
mance.

The HPF model of parallelism appears to be adequate for expressing the
parallelism that existed in BT, SP and FT with one exception. Due to the
inability of HPF to express pipelined computations or express multiparti-
tioning, an extra 3D array redistribution was required in each of these
benchmarks. The concurrency regions of the LU benchmark are planes

1. http:/ /www.crpc.rice.edu/NHSFreview /HPF

23

normal to the grid diagonal and nontrivial code modifications were re-
quired to express the parallelism. The efficiency of MG was affected by in-
ability of the compiler to handle arrays of pointers.

At the current level of HPF compiler maturity it generates code which
runs about 2 times slower on a single processor than the original serial
code. On multiple processors the code speeds up almost linearly until the
point (in the 16-32 processor range) where the redistribution creates a sig-
nificant overhead. We have plans to implement the ARC3D code in HPF
and evaluate performance and portability of the benchmarks compiled
with other HPF compilers.

Acknowledgments: The authors wish to acknowledge NAS scientists in-
volved in the effort of parallelization of NAS benchmarks: Maurice Yar-
row, Rob F. Van der Wijngaart, Michelle Hribar, Abdul Waheed and Cathy
Schulbach. Insight to pghpf implementation of distributed array opera-
tions was provided by Douglas Miles and Mark Young from Portland
Group. The work presented in the paper is supported under NASA High
Performance Computing and Communication Program.

7. References

[1] V. Adve,]. Mellor-Crummey. Using Integer Sets for Data-Parallel Pro-
gram Analysis and Optimization. To Appear in Proceedings of the
SIGPLAN’98 Conference On Programming Language Design and
Implementation, June 98.

[2] D. Bailey, T. Harris, W. Sahpir, R. van der Wijngaart, A. Woo, M. Yar-
row. The NAS Parallel Benchmarks 2.0. Report NAS-95-020, Dec. 1995.
http:/ /science.nas.nasa.gov/Software/NPB.

[3] E. Barszcz, R. Fatoohi, V. Venkatakrishnan, S. Weeratunga. Solution
of Reqular, Sparse Triangular Linear Systems on Vector an Distributed-
Memory Multiprocessors. NAS report RNR-93-007, April 1993.

[4] J-Y. Berhou, L. Colomert. Which approach to parallelizing scientific codes
- That is a question. Parallel Computing 23(1997) 165-179.

[5] M. Frumkin, M. Hribar, H. Jin, A. Waheed, J. Yan. A Comparison of
Automatic Parallelization Tools/Compilers on the SGI Origin 2000.Will
be presented as a technical paper at Supercomputing98.

[6] K.G. Li, N. M. Zamel. An Evaluation of HPF Compilers and the Imple-
mentation of a Parallel Linear equation Solver Using HPF and MPI.Tech-

nical paper presented at Supercomputing 97, November 97, San
Jose, CA.

[7] High Performance Fortran Language Specification. High Performance
Fortran Forum, Version 2.0, CRPC-TR92225, January 1997,
http:/ /www.crpc.rice.edu/CRPC/softlib/ TRs_online.html

24

[8] C.H. Koelbel, D.B. Loverman, R. Shreiber, GL. Steele Jr., M.E. Zosel.
The High Performance Fortran Handbook. MIT Press, 1994.

[9] C.H. Koelbel. An Introduction to HPF 2.0. High Performance Fortran -
Practice and Experience. Tutorial Notes of Supercomputing 97.
November 97, San Jose, CA.

[10]].G. Lewis, R.A. van de Geijn. Distributed Memory Matrix-Vector
Multiplication and Conjugate Gradient Algorithms. Supercomput-
ing’93, Proc. Portland, OR, Nov. 15-19, 1993, pp. 484-492.

[11]T. Ngo, L. Snyder, B. Chamberlain. Portable Performance of Data Par-
allel Languages. Technical paper presented at Supercomputing 97,
November 97, San Jose, CA.

[12]The Portland Group. pghpf Reference Manual. February 1997, 142 pp.
http:/ /www.pgroup.com/ref_manual/ hpfref. htm.

[13] S. Saini, D. Bailey. NAS Parallel Benchmark (Version 1.0) Results 11-
96. Report NAS-96-18, November 1996.

[14]]. Subhlok, P. Steenkiste, J. Stichnoth, P. Lieu. Airshed Pollution Mod-
eling: A Case Study in Application Development in an HPF Environment.
IPPS/SPDP 98. Proceedings. Orlando, March 30- April 3, 1998, pp.
701-710.

25

NAS TECHNICAL REPORT

Title: Implementationof NAS ParallelBen-
chmarks in High Performance Fortran

Author(s): Michael Frumkin,
Haogqgiang Jin,
Jerry Yan

Two reviewers

Reviewers:

“I have carefully and thoroughly reviewed
this technical report. I have worked with the
author(s) to ensure clarity of presentation and
technical accuracy. I take personal responsi-
bility for the quality of this document.”

must sign. Sjgned;
Name: Rob F. Van der Wijngaart
Signed:
Name: Maurice Yarrow
fsf;fgnagliggvalf Branch Chief:
Report number.
Approved:
Date: NAS ReportNumber: NAS-98-009

26

